Kinetic studies on elemental sulfur oxidation by Acidithiobacillus ferrooxidans: sulfur limitation and activity of free and adsorbed bacteria.

نویسندگان

  • Pavla Ceskova
  • Martin Mandl
  • Sarka Helanova
  • Jitka Kasparovska
چکیده

The kinetics of sulfur oxidation by Acidithiobacillus ferrooxidans in shaking flasks and a 10-L reactor was studied. The observed linearity of growth and sulfur oxidation was explained by sulfur limitation. Total cell yield was not significantly different for exponential growth as compared to growth during the sulfur-limiting phase. Kinetic studies of sulfur oxidation by growing and nongrowing bacteria indicated that both free and adsorbed bacteria oxidize sulfur. Changes in the number of free bacteria rather than cells adsorbed on sulfur were better predictors of the kinetics of sulfur oxidation, indicating that the free bacteria were performing sulfur oxidation. The active growth phase always followed adsorption of bacteria on sulfur; however, the special metabolic role of adsorbed bacteria was unclear. Their activity in sulfur solubilization was considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp.

To identify the actual substrate of the glutathione-dependent sulfur dioxygenase (EC 1.13.11.18) elemental sulfur oxidation of the meso-acidophilic Acidithiobacillus thiooxidans strains DSM 504 and K6, Acidithiobacillus ferrooxidans strain R1 and Acidiphilium acidophilum DSM 700 was analysed. Extraordinarily high specific sulfur dioxygenase activities up to 460 nmol x min(-1) (mg protein)(-1) w...

متن کامل

Growth of Acidithiobacillus Ferrooxidans ATCC 23270 in Thiosulfate Under Oxygen-Limiting Conditions Generates Extracellular Sulfur Globules by Means of a Secreted Tetrathionate Hydrolase

Production of sulfur globules during sulfide or thiosulfate oxidation is a characteristic feature of some sulfur bacteria. Although their generation has been reported in Acidithiobacillus ferrooxidans, its mechanism of formation and deposition, as well as the physiological significance of these globules during sulfur compounds oxidation, are currently unknown. Under oxygen-sufficient conditions...

متن کامل

Purification and characterization of sulfide:quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans.

Sulfide:quinone oxidoreductase (SQR) was purified from membrane of acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans NASF-1 cells grown on sulfur medium. It was composed of a single polypeptide with an apparent molecular mass of 47 kDa. The apparent K(m) values for sulfide and ubiquinone were 42 and 14 muM respectively. The apparent optimum pH for the SQR activity was about...

متن کامل

Oxidation of Ferrous Iron and Elemental Sulfur by Thiobacillus ferrooxidans.

The oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans that was absorbed and unabsorbed onto the surface of sulfur prills was studied. Unadsorbed sulfur-grown cells oxidized ferrous iron at a rate that was 3 to 7 times slower than that of ferrous iron-grown cells, but sulfur-grown cells were able to reach the oxidation rate of the ferrous iron-adapted cells after only 1...

متن کامل

XRF analysis of coal bioleaching by chemolithoheterotrophic Alicyclobacillus HRM5 and chemolithoautotrophic Acidithiobacillus ferrooxidans

Most studies on sulfur bioleaching from coal depend on an autotrophic microorganism with a low growth and a long leaching time. For this reason, heterotrophic heat and acidic pH-resistant Alicyclobacillus was used as the growing and resting cells for the sulfur and iron removal from coal. The results obtained were analyzed by XRF. The data showed that 26.71% of sulfur was removed by Alicyclobac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 78 1  شماره 

صفحات  -

تاریخ انتشار 2002